The use of Computational Thermodynamics to predict properties of multicomponent materials for nuclear applications

Bo Sundman and Christine Guéneau

INSTN and DEN/DANS/DPC/SCCME, CEA Saclay

December 5, 2012
Abstract

Computational Thermodynamics is based on physically realistic models to describe metallic and oxide crystalline phases as well as the liquid and gas in a consistent manner. The models are used to assess experimental and theoretical data for many different materials and several thermodynamic databases has been developed for steels, ceramics, semiconductor materials as well as materials for nuclear applications.

Within CEA a long term work is ongoing to develop a database for the properties of nuclear fuels and structural materials. An overview of the modelling technique will be given and several examples of the application of the database to different problems.
Outline

- Thermodynamics
Outline

- Thermodynamics
- Computational Thermodynamics (CT, Calphad)
 - models,
Outline

- Thermodynamics
- Computational Thermodynamics (CT, Calphad)
 - models,
 - software
Outline

- Thermodynamics
- Computational Thermodynamics (CT, Calphad)
 - models,
 - software
 - assessments and databases
Outline

- Thermodynamics
- Computational Thermodynamics (CT, Calphad)
 - models,
 - software
 - assessments and databases
- The fuelbase database.
Outline

- Thermodynamics
- Computational Thermodynamics (CT, Calphad)
 - models,
 - software
 - assessments and databases
- The fuelbase database.
- Modelling oxides.
Outline

- Thermodynamics
- Computational Thermodynamics (CT, Calphad)
 - models,
 - software
 - assessments and databases
- The fuelbase database.
- Modelling oxides.
- Summary and conclusions
Outline

- Thermodynamics
- Computational Thermodynamics (CT, Calphad)
 - models,
 - software
 - assessments and databases
- The fuelbase database.
- Modelling oxides.
- Summary and conclusions

Literature:

Classical Thermodynamics

Thermodynamics is a phenomenological theory describing the relation between some observable properties like temperature, T, pressure, P, heat Q, etc.
Classical Thermodynamics

Thermodynamics is a phenomenological theory describing the relation between some observable properties like temperature, T, pressure, P, heat Q, etc.

It is founded on two simple laws for macroscopic systems:

1. Energy cannot be destroyed or created,
Classical Thermodynamics

Thermodynamics is a phenomenological theory describing the relation between some observable properties like temperature, T, pressure, P, heat Q, etc.

It is founded on two simple laws for macroscopic systems:

1. Energy cannot be destroyed or created,
2. Heat never flows spontaneously from a cold body to a hot body
Classical Thermodynamics

Thermodynamics is a phenomenological theory describing the relation between some observable properties like temperature, T, pressure, P, heat Q, etc. It is founded on two simple laws for macroscopic systems:

1. Energy cannot be destroyed or created,
2. Heat never flows spontaneously from a cold body to a hot body

These laws, and some trivial mathematics, makes it possible to define a number of additional properties like internal energy, U, entropy, S, Gibbs energy, G etc. These are not observables but can be used to derive strict mathematical relations between many properties.
Properties derived from the Gibbs energy

\[
S = - \left(\frac{\partial G}{\partial T} \right)_{P,N_i}
\]

\[
H = G - TS
\]

\[
V = \left(\frac{\partial G}{\partial P} \right)_{T,N_i}
\]

\[
\mu_i = \left(\frac{\partial G}{\partial N_i} \right)_{T,P,N_j \neq i}
\]
Properties derived from the Gibbs energy

\[S = - \left(\frac{\partial G}{\partial T} \right)_{P,N_i} \]
\[H = G - TS \]
\[V = \left(\frac{\partial G}{\partial P} \right)_{T,N_i} \]
\[\mu_i = \left(\frac{\partial G}{\partial N_i} \right)_{T,P,N_{j\neq i}} \]
\[C_P = -T \left(\frac{\partial^2 G}{\partial T^2} \right)_{P,N_i} \]
\[\alpha = \frac{1}{V} \left(\frac{\partial^2 G}{\partial P \partial T} \right)_{N_i} \]
\[\kappa = -\frac{1}{V} \left(\frac{\partial^2 G}{\partial P^2} \right)_{T,N_i} \]
Computational Thermodynamics: Central part of science
Computational Thermodynamics: Models 1

The Gibbs energy has been selected for modelling materials properties using the Calphad method. The main reason is that most experimental data is known at constant T and P.

Bo Sundman and Christine Guéneau (INSTN and DEN/DANS/DPC/SCCME, CEA Saclay)
The Gibbs energy has been selected for modelling materials properties using the Calphad method. The main reason is that most experimental data is known at constant T and P. T and P are intensive properties and simple polynomials can be used to describe the T and P dependence, but for very high pressures special models are needed.
The Gibbs energy has been selected for modelling materials properties using the Calphad method. The main reason is that most experimental data is known at constant T and P. T and P are intensive properties and simple polynomials can be used to describe the T and P dependence, but for very high pressures special models are needed. Modelling the composition dependence is the more complicated. There are two reasons for this:

- the amount of a component, N_i is an extensive property,
Computational Thermodynamics: Models 1

The Gibbs energy has been selected for modelling materials properties using the Calphad method. The main reason is that most experimental data is known at constant T and P. T and P are intensive properties and simple polynomials can be used to describe the T and P dependence, but for very high pressures special models are needed.

Modelling the composition dependence is the more complicated. There are two reasons for this:

- the amount of a component, N_i, is an extensive property,
- the configurational entropy is very important.
The Gibbs energy has been selected for modelling materials properties using the Calphad method. The main reason is that most experimental data is known at constant T and P. T and P are intensive properties and simple polynomials can be used to describe the T and P dependence, but for very high pressures special models are needed. Modelling the composition dependence is the more complicated. There are two reasons for this:

- the amount of a component, N_i is an extensive property,
- the configurational entropy is very important.

For the configurational entropy one must take into account the formation of molecules in a gas phase, crystalline sites in solids, charge transfer between elements, clusters etc. In many cases it is necessary to introduce more constituents of the phases than just the components.
Computational Thermodynamics: Models 2

Most materials consist of several crystalline phases with different structure and properties. The material often interact with other phases like gas and liquids.

The Gibbs energy is an extensive property and it is possible to model each phase separately:

\[G = \sum_{\alpha} N_{\alpha} G_m(T, P, y_i) \]

where \(N_{\alpha} \) is the number of moles and \(G_m^{\alpha} \) is the molar Gibbs energy of the phase \(\alpha \).
Computational Thermodynamics: Models 2

Most materials consist of several crystalline phases with different structure and properties. The material often interact with other phases like gas and liquids. The Gibbs energy is an extensive property and it is possible to model each phase separately:

$$G = \sum_{\alpha} N^\alpha G^\alpha_m(T, P, y_i)$$

where N^α is the number of moles and G^α_m is the molar Gibbs energy of the phase α. The molar Gibbs energy is written as a function of the constituent fractions, y_i, to model the configuration of the phase. In this way each phase can be modelled independently.
Computational Thermodynamics: Models 2

Most materials consist of several crystalline phases with different structure and properties. The material often interact with other phases like gas and liquids. The Gibbs energy is an extensive property and it is possible to model each phase separately:

\[G = \sum_{\alpha} \nu^\alpha G^\alpha_m(T, P, y_i) \]

where \(\nu^\alpha \) is the number of moles and \(G^\alpha_m \) is the molar Gibbs energy of the phase \(\alpha \). The molar Gibbs energy is written as a function of the constituent fractions, \(y_i \), to model the configuration of the phase. In this way each phase can be modelled independently. The equilibrium is found by minimizing the total Gibbs energy for the given set of external conditions.
Computational Thermodynamics: Models 3

In a gas phase the molecules like H$_2$, H$_2$O, O$_2$ etc. are the constituents. The mole fraction of component i in the gas is

$$x_i^{\text{gas}} = \frac{\sum_j b_{ij} y_j^{\text{gas}}}{\sum_k \sum_j b_{kj} y_j^{\text{gas}}}$$

where b_{ij} is the stoichiometric ratio of component i in j.

Bo Sundman and Christine Guéneau (INSTN and DEN/DANS/DPG/SCCME, CEA Saclay)
The use of Computational Thermodynamics to predict properties of multicomponent materials
December 5, 2012 9 / 26
Computational Thermodynamics: Models 3

In a gas phase the molecules like H_2, H_2O, O_2 etc. are the constituents. The mole fraction of component i in the gas is

$$x_i^{\text{gas}} = \frac{\sum_j b_{ij} y_j^{\text{gas}}}{\sum_k \sum_j b_{kj} y_j^{\text{gas}}}$$

where b_{ij} is the stoichiometric ratio of component i in j.

In a crystalline phase one may have several sublattices with are preferred by different elements.

$$x_i^{\alpha} = \frac{\sum_s a_s \sum_j b_{ij} y_j^{(s),\alpha}}{\sum_s a_s \sum_k \sum_j b_{kj} y_j^{(s),\alpha}}$$

where a_s is the number of sites on sublattice s, b_{ij} is the stoichiometric factor and $y_j^{(s)}$ is the fraction of constituent i on sublattice s.
The figures below represent three crystalline structures, B1, D8\textsubscript{b} and D0\textsubscript{3} which require sublattices to be modelled.

The Compound Energy Formalism (CEF) assumes random mixing of the constituents on each sublattice which gives the configurational entropy as

$$S_{m}^{\text{cfg}} = \sum_{s} a_{s} \sum_{i} y_{i}^{(s)} \ln(y_{i}^{(s)})$$

Bo Sundman and Christine Guéneau (INSTN and DEN/DANS/DPC/SCEM/CEA Saclay) predict properties of multicomponent materials
The *end member* is an important concept in CEF defining one specific constituent in each sublattice. This defines a compound and the surface of reference for the phase:

\[\text{srf } G_m = \sum \prod_{i} y^{(s)}_i \circ G_l \]

where \(l \) has one constituent \(i \) in each sublattice \(s \) and \(\circ G_l \) is the Gibbs energy of formation of this compound from the reference states of the elements, depending only on \(T \) and \(P \).
The **end member** is an important concept in CEF defining one specific constituent in each sublattice. This defines a compound and the surface of reference for the phase:

\[
\text{srf } G_m = \sum \prod y_i^{(s)} \circ G_i
\]

where \(I \) has one constituent \(i \) in each sublattice \(s \) and \(\circ G_i \) is the Gibbs energy of formation of this compound from the reference states of the elements, depending only on \(T \) and \(P \).

In order to represent the interaction energy between the constituents in sublattices there is an excess Gibbs energy:

\[
E G_m = \sum \prod j_j y_j^{(s)} L_J
\]

where \(J \) has one or more constituents in each sublattice and \(L_J \) describe the properties of real phases.
There are several commercial software for equilibrium calculations and they offer slightly different ways to control a system. The simplest way is to specify T, P and the amount of all components.
Computational Thermodynamics: Software 1

There are several commercial software for equilibrium calculations and they offer slightly different ways to control a system. The simplest way is to specify T, P and the amount of all components. But a user may prefer to specify the chemical potential, μ_i of a component i or its activity or one or more of the stable phases or maybe even the composition of a specific phase.
Computational Thermodynamics: Software 1

There are several commercial software for equilibrium calculations and they offer slightly different ways to control a system. The simplest way is to specify T, P and the amount of all components. But a user may prefer to specify the chemical potential, μ_i of a component i or its activity or one or more of the stable phases or maybe even the composition of a specific phase. By varying one of the conditions one can calculate how the system varies with this and that is known as a property diagram.

Oxygen potentials in UO$_2$

Bo Sundman and Christine Guéneau (INSTN, DEN/DANS/DPC, SCCME, GEA-Saclay) predict properties of multicomponent/multielement materials using Computational Thermodynamics.
Computational Thermodynamics: Software 1

There are several commercial software for equilibrium calculations and they offer slightly different ways to control a system. The simplest way is to specify T, P and the amount of all components. But a user may prefer to specify the chemical potential, μ_i of a component i or its activity or one or more of the stable phases or maybe even the composition of a specific phase. By varying one of the conditions one can calculate how the system varies with this and that is known as a property diagram.
Computational Thermodynamics: Software 1

There are several commercial software for equilibrium calculations and they offer slightly different ways to control a system. The simplest way is to specify T, P and the amount of all components. But a user may prefer to specify the chemical potential, μ_i of a component i or its activity or one or more of the stable phases or maybe even the composition of a specific phase. By varying one of the conditions one can calculate how the system varies with this and that is known as a property diagram.
Computational Thermodynamics: Software 2

When two or more conditions are allowed to vary the software will calculate a *phase diagram* where the lines separate regions with different sets of stable phases.

The leftmost diagram is the O-Zr phase diagram, the middle diagram is an isothermal section at 473 K of the O-Pu-U phase diagram and the rightmost an isopleth section of the C-O-Pu-U system.
The diagrams below show the modelled Gibbs energy functions for two phases in a binary system at 3 different temperatures.
The diagrams below show the modelled Gibbs energy functions for two phases in a binary system at 3 different temperatures.

The equilibrium state for any temperature and composition is the lowest Gibbs energy.
The diagrams below show the modelled Gibbs energy functions for two phases in a binary system at 3 different temperatures.

The equilibrium state for any temperature and composition is the lowest Gibbs energy. The end points to a tangent to a Gibbs energy curve gives the chemical potential of the components,

\[\mu_i = \left(\frac{\partial G}{\partial N_i} \right)_{T,P,N_j \neq i} \]
The diagrams below show the modelled Gibbs energy functions for two phases in a binary system at 3 different temperatures.

The equilibrium state for any temperature and composition is the lowest Gibbs energy. The end points to a tangent to a Gibbs energy curve gives the chemical potential of the components,

$$
\mu_i = \left(\frac{\partial G}{\partial N_i} \right)_{T,P,N_j \neq i}
$$

As the Gibbs energy curves are modelled outside the stable range of the phases it is possible to calculate metastable states.
The diagrams below show the modelled Gibbs energy functions for two phases in a binary system at 3 different temperatures.

In two-phase regions the *common tangents* to the Gibbs energy curves gives the most stable state. The vertical dashed lines indicate the compositions of the phases for the common tangents.
The diagrams below show the modelled Gibbs energy functions for two phases in a binary system at 3 different temperatures.

The solubility lines in the phase diagram are obtained by joining the points of the common tangents at varying temperatures.
Computational Thermodynamics: Databases 1

In a CT database is stored:

- the model descriptions for each assessed phase,
In a CT database is stored:

- the model descriptions for each assessed phase,
- the end member energies, θG_i,
Computational Thermodynamics: Databases 1

In a CT database is stored:

- the model descriptions for each assessed phase,
- the end member energies, ΔG_i,
- the interaction energies, L_J.
In a CT database is stored:

- the model descriptions for each assessed phase,
- the end member energies, ΔG_i,
- the interaction energies, L_J.
- additional data like magnetic parameters etc.
Computational Thermodynamics: Databases 1

In a CT database is stored:

- the model descriptions for each assessed phase,
- the end member energies, G_I,
- the interaction energies, L_J.
- additional data like magnetic parameters etc.

All these model parameters must be assessed, normally using experimental data, in binary and ternary systems.
Computational Thermodynamics: Databases 1

In a CT database is stored:

- the model descriptions for each assessed phase,
- the end member energies, \(\Delta G_i \),
- the interaction energies, \(L_J \).
- additional data like magnetic parameters etc.

All these model parameters must be assessed, normally using experimental data, in binary and ternary systems. Assessments are tedious and difficult tasks and requires great skill of the person doing the assessment, or his advisor.
In a CT database is stored:

- the model descriptions for each assessed phase,
- the end member energies, ΔG_i,
- the interaction energies, L_J.
- additional data like magnetic parameters etc.

All these model parameters must be assessed, normally using experimental data, in binary and ternary systems. Assessments are tedious and difficult tasks and requires great skill of the person doing the assessment, or his advisor. By combining several binary and ternary assessments one can construct multicomponent databases. Normally adjustments are needed to obtain correct multicomponent extrapolations.
In a CT database is stored:

- the model descriptions for each assessed phase,
- the end member energies, ΔG_i,
- the interaction energies, L_J.
- additional data like magnetic parameters etc.

All these model parameters must be assessed, normally using experimental data, in binary and ternary systems. Assessments are tedious and difficult tasks and requires great skill of the person doing the assessment, or his advisor. By combining several binary and ternary assessments one can construct multicomponent databases. Normally adjustments are needed to obtain correct multicomponent extrapolations. Some model parameters, like the description of pure elements, must not be changed because that would make it impossible to combine assessments.
Computational Thermodynamics: Assessment 1

Critical review of the literature data
Phase diagrams
Thermodynamic data
Crystalline data

Choice of the model
Sublattice model for each phase
Variables to be optimized

Determination of thermodynamic data
Phase diagram (DTA, heat treatment ...)
Activities (EMF, KCMS, TGA ...)
Enthalpies, heat capacities
(calorimetry, ab-initio)

Selection of experimental data

Selection of the variables for the optimization

OPTIMIZATION

If the fit is not good

If the fit is not good

If the fit is good

Database \(G \) phase = \(f(T, x, P) \)

Bo Sundman and Christine Guéneau (INSTN and DEN/DANS/DRF/DCCME/CEA Saclay) predict properties of multicomponent...
All kinds of data that can be calculated from the Gibbs energy of the system can, and must, be used to fit the model parameters.
Computational Thermodynamics: Assessment 2

All kinds of data that can be calculated from the Gibbs energy of the system can, and must, be used to fit the model parameters.

At CEA there is an ongoing project to develop the fuelbase database for nuclear fuels, fission products, and structural materials.
Computational Thermodynamics: Assessment 2

All kinds of data that can be calculated from the Gibbs energy of the system can, and must, be used to fit the model parameters.

At CEA there is an ongoing project to develop the fuelbase database for nuclear fuels, fission products, and structural materials.

In recent assessments results from DFT calculations have been included for the formation of defects and metastable compounds.
Diagrams calculated from fuelbase

Cr-Fe

CaO-SiO₂

O-U

Cr-Fe-Ni at 1073 K

Al₂O₃-CaO-SiO₂ at 1673 K

Isothermal section of Am-O-Pu at 1273 K
Modelling ionic systems 1

The difficulty with modelling oxides is the charge transfer. Normally each oxygen atom will take two electrons from the metallic atoms, some with multiple valencies, and a separate charge balance is needed for the equilibrium.
Modelling ionic systems 1

The difficulty with modelling oxides is the charge transfer. Normally each oxygen atom will take two electrons from the metallic atoms, some with multiple valencies, and a separate charge balance is needed for the equilibrium. In crystalline phases vacancies are often needed to describe defects or deviations from stoichiometry.

A simple case is wustite (periclase, halite) with a B1 structure modelled as $(\text{Fe}^{+2}, \text{Fe}^{+3}, \text{Va})_1(\text{O}^-)^1$.

![Diagram of wustite structure]
Modelling ionic systems 2

The C1 structure, CaF$_2$, is the same structure as MO$_2$ in nuclear fuels modelled with several metallic valencies and defects on the oxygen sublattice and interstitial oxygen. The shaded plane is the neutral combination of defects.

The end members can be drawn in different ways, either varying occupancy of the oxygen sublattices at constant valency of U (top square prism) or varying U valencies at constant occupancy of the oxygen sublattices (bottom triangular prism).
Modelling ionic systems 2

The C1 structure, CaF$_2$, is the same structure as MO$_2$ in nuclear fuels modelled with several metallic valencies and defects on the oxygen sublattice and interstitial oxygen. The shaded plane is the neutral combination of defects.

The end members can be drawn in different ways, either varying occupancy of the oxygen sublattices at constant valency of U (top square prism) or varying U valencies at constant occupancy of the oxygen sublattices (bottom triangular prism).

For the U-Pu-O system the model is:

$$(U^{+3}, U^{+4}, U^{+5}, Pu^{+3}, Pu^{+4})_1(O^{−2}, Va)_2(O^{−2}, Va)_1$$
Modelling ionic systems 2

Most of the end members of the UO\(_2\) model have a net charge and cannot be measured or even calculated by DFT. But one can make neutral combinations related to the formation of compounds.

The reaction for electronic defects is

\[2U^{+4} = U^{+3} + U^{+5} \]

and expressed by the difference of 3 end members

\[\circ G_{3:O:V} + \circ G_{5:O:V} - 2 \circ G_{4:O:V} \]
Modelling ionic systems 2

Most of the end members of the UO\textsubscript{2} model have a net charge and cannot be measured or even calculated by DFT. But one can make neutral combinations related to the formation of compounds.

The reaction for electronic defects is

\[2U^{+4} = U^{+3} + U^{+5} \]

and expressed by the difference of 3 end members

\[\Delta \hat{G}_3:O:V + \Delta \hat{G}_5:O:V - 2 \Delta \hat{G}_4:O:V \]

The Frenkel defects forming interstitial oxygen is given by

\[\Delta \hat{G}_4:O:O + \Delta \hat{G}_4:V:O - 2 \Delta \hat{G}_4:O:V \]
Summary

Calculations using a thermodynamic databases must be combined with other information and models in order to describe the real behaviour of a material.
Summary

Calculations using a thermodynamic databases must be combined with other information and models in order to describe the real behaviour of a material.

- Thermodynamics models can take some defects into account, like vacancies, interstitials, anti-site atoms etc.
Summary

Calculations using a thermodynamic databases must be combined with other information and models in order to describe the real behaviour of a material.

- Thermodynamics models can take some defects into account, like vacancies, interstitials, anti-site atoms etc.
- It is also possible to include kinetic data like mobilities in the databases but that require additional assessment work.
Summary

Calculations using a thermodynamic databases must be combined with other information and models in order to describe the real behaviour of a material.

▪ Thermodynamics models can take some defects into account, like vacancies, interstitials, anti-site atoms etc.
▪ It is also possible to include kinetic data like mobilities in the databases but that require additional assessment work.
▪ The thermodynamic models can be extrapolated to metastable states and calculate the driving forces for precipitation of new phases.
Summary

Calculations using a thermodynamic databases must be combined with other information and models in order to describe the real behaviour of a material.

- Thermodynamics models can take some defects into account, like vacancies, interstitials, anti-site atoms etc.
- It is also possible to include kinetic data like mobilities in the databases but that require additional assessment work.
- The thermodynamic models can be extrapolated to metastable states and calculate the driving forces for precipitation of new phases.
- Thermodynamics provide information on the gradients in chemical potential driving the diffusion in phase transformations.
Summary

Calculations using a thermodynamic databases must be combined with other information and models in order to describe the real behaviour of a material.

- Thermodynamics models can take some defects into account, like vacancies, interstitials, anti-site atoms etc.
- It is also possible to include kinetic data like mobilities in the databases but that require additional assessment work.
- The thermodynamic models can be extrapolated to metastable states and calculate the driving forces for precipitation of new phases.
- Thermodynamics provide information on the gradients in chemical potential driving the diffusion in phase transformations.
- The thermodynamic factor, the matrix with the second derivatives of the Gibbs energy, is needed to evaluate diffusion coefficients.
Conclusions

There are many factors which must be modelled and determined experimentally in order to understand the behaviour of multicomponent materials.
Conclusions

There are many factors which must be modelled and determined experimentally in order to understand the behaviour of multicomponent materials.
With an assessed thermodynamic database it is easy to calculate the set of stable set of phases, their amount and composition and the chemical potentials of the components for the varying external conditions.
Conclusions

There are many factors which must be modelled and determined experimentally in order to understand the behaviour of multicomponent materials. With an assessed thermodynamic database it is easy to calculate the set of stable set of phases, their amount and composition and the chemical potentials of the components for the varying external conditions. This is a great help to select critical experimental work and to use in software for simulation of phase transformations.
Thanks for listening