Impact of fuel assembly transportation on zirconium alloys: toward a mechanistic understanding

F. Onimus, J. Ribis, B. Bourdiliau, C. Cappelaere
INDUSTRIAL BACKGROUND: END OF LIFE OF THE FUEL ASSEMBLY

Spent Nuclear Fuel Assembly

Temperature from 400°C up to 450°C

In-reactor use Dry transportation In-pool storage

Neutron irradiation of the Zr alloy cladding

Post-irradiation creep of the Zr alloy cladding and radiation damage recovery

Room temperature mechanical properties at retrieval?
Recrystallized Zr-1%Nb alloy

Chemical composition (% wt)

<table>
<thead>
<tr>
<th>%wt</th>
<th>O</th>
<th>Sn</th>
<th>Fe</th>
<th>Cr</th>
<th>Nb</th>
<th>Zr</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXA Zr-1%Nb</td>
<td>0.12</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>1</td>
<td>Bal.</td>
</tr>
</tbody>
</table>

Cladding in Zr alloy

→ creation of a high density of small loops
Heat treatment → to simulate transportation

After heat treatment at 400°C during 250 h

- As-irradiated material
 - $\langle \rho_b \rangle = 1.2 \times 10^{22} \text{ m}^{-3}$
 - $\langle d \rangle = 14 \text{ nm}$

- After heat treatment at 400°C during 250 h
 - $\langle \rho_b \rangle = 2.5 \times 10^{21} \text{ m}^{-3}$
 - $\langle d \rangle = 18 \text{ nm}$

The loop size increases while the density decreases

After heat treatment at 450°C during 960 h

- $\langle \rho_b \rangle = 1.2 \times 10^{20} \text{ m}^{-3}$
 - $\langle d \rangle = 176 \text{ nm}$

Radiation damage recovery
Loop nature using inside / outside contrast method

- Only vacancy loops at the end of the recovery
- Interstitial loops recover faster than vacancy loops

What is the loop recovery mechanism?
As-irradiated microstructure

Shrinking of the vacancy and interstitial loops

Shrinking of the smallest loop at the expense of the biggest loop

Annealed microstructure
Predictive modelling approach: cluster dynamic

Single-vacancy evolution:
\[\frac{dC_v(i)}{dt} = \text{production} - \text{annihilation} \]
No creation of point defects during annealing

Cluster evolution:
\[\frac{dC(n)}{dt} = a_{n-1}C(n+1) - b_nC(n) + c_{n-1}C(n-1) \]

Mean-field modeling
Sinks: clusters, dislocation lines, grain boundaries / free surfaces
Vacancy emission
Vacancy absorption
Vacancy cluster
Cluster dynamic modelling \rightarrow computation of loop size and density

Correct agreement between experiment and modeling
Evolution of vacancy and interstitial loop size distribution at 400°C

Evolution of the proportion of vacancy loops during heat treatment

<table>
<thead>
<tr>
<th>Annealing temperature (°C)</th>
<th>Annealing time (h)</th>
<th>Experiment Number of analysed loops</th>
<th>Percentage of vacancy loops (%)</th>
<th>Modelling Percentage of vacancy loops (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As-irradiated</td>
<td>As-irradiated</td>
<td>-</td>
<td>50 [23]</td>
<td>50</td>
</tr>
<tr>
<td>350</td>
<td>250</td>
<td>19</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>350</td>
<td>500</td>
<td>24</td>
<td>50</td>
<td>43</td>
</tr>
<tr>
<td>400</td>
<td>250</td>
<td>37</td>
<td>65</td>
<td>100</td>
</tr>
<tr>
<td>400</td>
<td>500</td>
<td>38</td>
<td>71</td>
<td>100</td>
</tr>
<tr>
<td>450</td>
<td>500</td>
<td>38</td>
<td>71</td>
<td>100</td>
</tr>
<tr>
<td>450</td>
<td>960</td>
<td>13</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

→ Correct agreement between experiment and modeling
High density of small loops -> pinning of dislocations -> radiation hardening

\[\Delta \tau_c = \alpha \mu b \sqrt{Nd} \]

Hardness as a function of the loop density & size

\[\rightarrow \text{Radiation hardening recovery during heat treatment} \]

\[\rightarrow \text{Correct prediction of radiation hardening recovery} \]
Post-irradiation creep → to simulate transportation

As-irradiated

After post-irradiation creep:
→ decrease of the loop density
(+ increase of the loop size)
→ Radiation damage recovery during creep
→ Effect on the tensile mechanical behavior?
- Irradiation induced hardening (increase of the yield stress and ultimate tensile strength)

- Loss of macroscopic ductility (decrease of the uniform elongation), but the failure remains ductile (strong necking)

→ What are the deformation mechanisms?
RT tensile test on non-irradiated material

Ring tensile test at room temperature after irradiation

→ homogeneous glide of dislocations in the prismatic planes mainly

Channels in the basal plane

Channels in the prismatic planes

- Heterogeneous deformation inside the grains (dislocation channeling)
- both basal and prismatic slip can be activated (depending on the grain orientation)
- easier basal slip than before irradiation
High density of small loops
-> pinning of dislocations
-> radiation hardening

Clearing of loops by gliding dislocations
-> microscopic strain softening
-> early localization of the deformation at the specimen scale
-> decrease of the Uniform Elongation observed during ring tensile tests

-> Why is the basal slip more easily activated after irradiation than before irradiation?
Loop Burgers vector:
\[\mathbf{b} = \frac{1}{3} [11\bar{2}0] \]

Dislocation Burgers vector:
\[\mathbf{b} = \frac{1}{3} [11\bar{2}0] \]

B dislocation - loop

P dislocation - loop

Glissile junction

\(\rightarrow \) Easy Basal channeling / difficult Prismatic channeling

Sessile junction
- Recovery of the radiation induced hardening after creep test
- Recovery of the macroscopic ductility (uniform elongation)

→ What are the deformation mechanisms?
After ring tensile test following post-irradiation creep:

-> very few remaining loops → lower radiation hardening

-> homogeneous prismatic glide mainly, no channel

→ recovery of the uniform elongation
CONCLUSIONS

Radiation damage recovery:
- Occurs by exchange of vacancies between loops
 → Shrinking of Int loops and of small Vac loops at the expense to bigger Vac loops

Cluster dynamic modeling:
→ Correct prediction radiation damage recovery & radiation hardening recovery

Mechanical behavior after neutron irradiation:
- Decrease of the uniform elongation due to the dislocation channeling
- Failure occurs after a strong necking → ductile failure
- Evolution of activated slip systems explained by junction between dislocations and loops

Impact of transportation (post-irradiation creep):
- Radiation hardening recovery due to the loop annealing during creep
- Recovery of the uniform elongation due to homogeneous glide of dislocations

→ Better knowledge and understanding of the effects of transportation on the mechanical properties of the fuel assembly at retrieval
Thank you!