Post-Irradiation analysis of fission gases in nuclear fuels

Ch. VALOT, J. NOIROT, Y. PONTILLON

MINOS Workshop, Materials Innovation for Nuclear Optimized Systems
December 5-7, 2012, CEA – INSTN Saclay, France
Fission gases in LWR: a safety issue

PIE facilities

Fission gases behavior: nominal operating conditions

Fission gases behavior: simulated accidental conditions

Further projects
Fission gas a safety issue in Light Water Reactor

- **Industrial issue**
 - Safety criterion: Internal cladding pressure at fuel rods end of life

- **Scientific needs**
 - **Fission gases Formation/Evolution...**
 - Nano-scale bubbles formation
 - From nano-scale to micro-scale bubbles
 - Fission gases features (bubbles internal pressure)
 - **Fission gases vs. fuel microstructure**
 - Link between fission gas release and fuel microstructure
 - Fission gases involved in the HBS (High Burnup Structure) formation
 - Gas release from HBS (normal and off-normal conditions)

[1]: B. Petitprez, B. Delaye, S. Beguin Proceedings of EHPGM Enlarged Halden Project Group Meeting, Lillehammer, 2005
Fission gases in LWR: a safety issue

PIE facilities

Fission gases behavior: nominal operating conditions

Fission gases behavior: simulated accidental conditions

Further projects
Post-Irradiation Analyses: Cadarache LECA-STAR Hot Laboratory

Sample preparation Metallographic examination
Microanalyses laboratory
LECA
LWR puncturing, NDE
Annealing test

STAR
Out of Pile annealing capabilities

Experimental objectives:
- Better understanding of fuel behavior under nominal condition,
- Out of Pile simulation of fission gas release in case of accidental conditions (LOCA or RIA)

Device capabilities:
- Sampling: 10-20 mm segment
- High Frequency induction furnace:
 - Max. Temp.: 2800°C
 - Max. Temp. ramp: 200°C/s
- Accurate temperature monitoring
- Fission gas analysis:
 - Gamma spectrometry for online measurement
 - Gas-chromatography for stable gas analysis (Hel…)

[3]: J. Noirot, Ch. Gonnier, L. Desgranges, Y. Pontillon, J. Lamontagne
IAEA-TECDOC-CD-1635-2009
[4]: Y. Pontillon et al.
Post Irradiation Examination capabilities

- Actinides and FP:
 - Location
 - Quantification

- Fuel microstructure:
 - Porosity, HBS…
 - Crystalline structure

- Modified equipments
- α-box and gamma shielding
Xenon analysis: Coupling SEM, EPMA and SIMS

Xe inventory
- EPMA quantitative analysis
- Sample preparation effect (RIM, fuel center)
- In depth SIMS analysis
- SIMS to EPMA calibration

Distribution and content: Actinides, Fission Products (Solid, gas)

EPMA
- Secondary Electrons
- Primary Electrons
- X rays

SIMS
- Primary Ion beam
- Sample
 - Isotopic analyses
 - Trace elements (ppb)
 - Gas inventory

SEM
- Xe inventory
- High Burn-Up fuel
- Before sputtering
- after sputtering

Graph
- Xe intensity (c/s)
- Sputtering time (s)
- Baseline (~Gas dissolved in the matrix)
- Peaks (bubbles full of gas)
Fission gases in LWR: a safety issue

PIE facilities

Fission gases behavior: nominal operating conditions

Fission gases behavior: simulated accidental conditions

Further projects
Fission gas behavior: nominal operating conditions

67 GWd/tU high burn-up UO₂ PWR fuel

Fuel rod NDE

Axial burn-up distribution

Fission product axial distribution

Fuel pellet μanalysis

Free Volume and Gas pressure measurement
Fission gas inventory (released from fuel column)

\[F\% = \frac{FGR}{FGC} \]

- FG behavior vs. local μstructure
- Local FGR vs. fuel rod scale FGR
Fission gas: local behavior

Fuel periphery

• SEM:
 • High density of gas bubbles
 • RIM structure

• EPMA Xe profile:
 • << creation
 • FGR ?

• SIMS depth profile:
 • Xe mainly precipitated
 • Baseline (precipitated in nano bubbles) ≈ EPMA
 • total inventory ≈ creation
 • No significant FGR
Fission gas: local behavior

Fuel center

- SEM:
 - High density of gas bubbles
 - EPMA Xe profile:
 - \(<\) creation
 - FGR?

- SIMS depth profile:
 - Part of Xe precipitated
 - nano-precipitated Xe \(\approx\) EPMA
 - total inventory \(<\) creation
 - Local FGR
Local/Total FG release

- Fuel rod FG release: 6.2% (BU ≈ 67 GWd/tU)
- Local FG release: ≈ 8-10% (local BU ≈ 73 GWd/tU)

Fission Gas bubble pressure

<table>
<thead>
<tr>
<th></th>
<th>RIM</th>
<th>0.3-0.4 r/R</th>
<th>Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>W% Xe in bubbles</td>
<td>2</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>S% Bubbles (< 3.5 μm)</td>
<td>14</td>
<td>1.8</td>
<td>3.5</td>
</tr>
<tr>
<td>At. Vol. (Å³.at⁻¹)</td>
<td>141</td>
<td>182</td>
<td>172</td>
</tr>
<tr>
<td>Bubble pressure (MPa) [4]</td>
<td>13 (300 K)</td>
<td>8 (300 K)</td>
<td>8 (300 K)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>84 (650 K)</td>
<td>130 (1220 K)</td>
</tr>
</tbody>
</table>

[4]: C. Ronchi, JNM, 96 (1981) 314-328
Outline

- Fission gases in LWR: a safety issue
- PIE facilities
- Fission gases behavior: nominal operating conditions
- Fission gases behavior: simulated accidental conditions
- Further projects
Fission gas behavior: simulated accidental conditions

- Lost Of Cooling Accident (LOCA) simulation
- On-line fission gas (85Kr) release
 - Overall release
 - Temperature dependant bursts

63 GWd/tU high burn-up UO₂ PWR fuel

Fission gas behavior: simulated accidental conditions

- RIM cracking
- No significant evolution of nano-precipitated gas
- Sharp decrease of Xe bubbles

- Grain boundaries opening
- No significant evolution of nano-precipitated gas
- No SIMS bubble detection
Fission gas behavior: simulated accidental conditions

Annealing treatment
(on-line FG release)

11.5% 85Kr

PIE
After heat treatment

12% 132Xe

50% RIM
35% center
15% mid-radius
Simulated accidental conditions

Importance of coupling separate effect experiments with quantitative PIE

Nominal operating conditions

Multi-scale (Rod to pellet) FG analyses

FGR vs. microstructure
- mainly in hot part of the pellet
- HBS gas retention capacities
- Overpressure of FG

Fuel behavior understanding

New fuel qualification

Safety of nuclear fuel

FGR modeling

FGR features:
- mainly from grain boundaries
- HBS and center release
- bubbles interconnections
- Critical temperature identified

Safety of nuclear fuel
Further projects:

SEM/FIB/EBSD device
- FIB column
- EDX detector
- EBSD device
- 3D extraction of porosities and grain boundaries network
- µsample preparation
 - TEM analyses
 - Synchrotron analyses (MARS beamline)

High pressure annealing loop
- Impact of fuel rod internal pressure on FGR
- Max Temperature/pressure: 1600°C/1600 bars
- Fission gas behavior: nominal operating conditions
- Standard fuel sample, one pellet
- Main analytical capability: online gamma spectrometry
Thank you for your attention

Contribution:
I. Aubrun, Ph. Bienvenu, S. Clément, B. Lacroix,
J. Lamontagne, B. Petitprez, C. Pozo
Th. Blay, E. Brochard, P. Delion, I. Roure