α Self-irradiation Effects on Structural Properties of (U,Am)O$_{2\pm\delta}$ Materials

1CEA-DEN-DTEC, Service d’Études des Combustibles et matériaux à base d’Actinides, SECA, (Marcoule, France)
2CEA-DEN-DTEC, Service de Développement des Technologies du Cycle, SDTC, (Marcoule, France)
3European Commission, Joint Research Centre, Institute for Transuranium Elements (Karlsruhe, Germany)
4Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (Dresden, Germany)
5CEA-DEN-DRCP, Service d’Étude du Recyclage des combustibles et d’Analyses, SERA, (Marcoule, France)
CONTEXT: AMERICIUM TRANSMUTATION

$U_{1-x}Am_xO_{2\pm\delta}$ compounds

- Americium is amongst the largest contributors to long-term radiotoxicity and heat load of ultimate nuclear waste from fuels
- To reduce this contribution: transmutation of Am in fast neutrons reactors
 - Am-doped MOX fuels
 - Inert-matrix-based targets
 - Uranium-americium mixed oxides: $U_{1-x}Am_xO_{2\pm\delta}$
- Research ongoing regarding $(U,Am)O_2$ compounds
 - Fabrication processes
 - Behavior under irradiation
 - Structural and thermodynamic properties
CONTEXT: AMERICIUM TRANSMUTATION

U_{1-x}Am_xO_{2±δ} properties

- **Fluorite-type structure**\(^1,^2\)
 - For Am/(U+Am) ratios from 0 to 70 at.%

- **Peculiar cationic charge distribution**\(^1,^3\)
 - Americium behaving as a pure +III cation
 - Oxidation of U\(^{+IV}\) to U\(^{+V}\)
 - Charge compensation mechanism
 - Lattice parameters deviating from a UO\(_2\)-AmO\(_2\) Vegard law

- High α activity of \(^{241}\)Am (1.3×10\(^{11}\) Bq.g\(^{-1}\)) led to studies on U\(_{1-x}\)Am\(_x\)O\(_{2±δ}\) behavior under self-irradiation
 - Storage before irradiation
 - Evaluation of the contribution of α-self-irradiation on other results

Measurements performed

- XRD monitoring of $U_{1-x}Am_xO_{2\pm\delta}$ (with different Am/(U+Am) ratios) evolution under self-irradiation for several months
 - Lattice parameter swelling with time
 - Influence of the Am content on the swelling

- Combined XAS/XRD characterization of $U_{1-x}Am_xO_{2\pm\delta}$ compounds with long storage time
 - Structural effects after long storage
 - Comparison between local and long-range structural effects

- Helium behavior in aged $U_{0.85}Am_{0.15}O_{2\pm\delta}$
 - Helium release during thermal annealing
 - TEM study before and after
 - Comparison between dense and “tailored-open-porosity” compounds
Sample preparation and XRD measurements

- $U_{1-x}Am_xO_{2+δ}$ samples:
 - Prepared from UO_2 and AmO_2 powders employing the UMACS process\(^1\)
 - Final sintering for 4 hours at 2023 K under $Ar-H_2 (+O_2)$
 - Various $Am/(U+Am)$ ratios: from 7.5 to 70 at.%

- XRD monitoring:
 - Thermal treatment before measurements (1373 K, 1 h, $Ar-H_2$)
 - Anneal self-irradiation defects
 - Reduce O/M (oxygen to metal) ratio of the samples
 - Beginning of XRD measurements right after annealing
 - Sample ground to powder and mixed with gold (reference)
 - Measurements performed under ambient conditions
 - Acquisitions of 25-120°$2θ$ diffractograms in 30 min to 3 h

XRD MONITORING: INITIAL BEHAVIOR

Evolution of $U_{1-x}Am_xO_{2+\delta}$ compounds with time under air

- Different behaviors during the first weeks of measurements:
 - 7.5 and 15 %Am
 - 30, 40 and 50 %Am
 - 60 and 70 %Am

- Oxidation of the samples (through a phase transition for Am/(U+Am) \geq 30 at. %)
- Single-phased compounds with the structure for all compositions after up to a few weeks
- Increase of lattice parameter

XRD MONITORING: LATTICE SWELLING

Evolution of $U_{1-x}Am_xO_{2±δ}$ lattice parameters

- Similar evolutions for all compositions
- Initial shrinkage (oxidation)
- Lattice swelling then saturation:
 - Swelling kinetics increases with Am content
 - Similar kinetics as a function of the dose

$$a(UO_2): \quad 5.47 \text{ Å}$$
$$a(\text{AmO}_2): \quad 5.37 \text{ Å}$$

Am/(U+Am) :
- 7.5 at.%
- 15 at.%
- 30 at.%
- 40 at.%
- 50 at.%
- 60 at.%
- 70 at.%

XRD MONITORING: FITTING LATTICE SWELLING

Evolution of $U_{1-x}Am_xO_{2\pm\delta}$ lattice parameters\(^1\)

- Fitting lattice parameter evolution with time or α dose ($R^2 > 99\%$)\(^2\)
 - Determination of three parameters:
 - Initial lattice parameter: a_i
 - Swelling at saturation: A
 - Kinetics constant: B or B'

\[
\frac{a_t - a_i}{a_i} = A(1 - e^{-B't}) = A(1 - e^{-BD\alpha})
\]

Am/(U+Am):
- 7.5 at.%
- 15 at.%
- 30 at.%
- 40 at.%
- 50 at.%
- 60 at.%

Evolution of $U_{1-x}Am_xO_{2\pm\delta}$ lattice parameters1

- Fitting lattice parameter evolution with time or α dose ($R^2 > 99 \%$)2
 - Determination of three parameters:
 - Initial lattice parameter: a_i
 - Swelling at saturation: A
 - Kinetics constant: B or B'

- Variations with the Am content:
 - Increase of swelling kinetics with the sample activity
 - Small decrease of the swelling saturation for highest Am contents

\[
\frac{a_t - a_i}{a_i} = A(1 - e^{-B't}) = A(1 - e^{-B^\prime D\alpha})
\]

XRD MONITORING: MICROSTRAIN AND CRYSTALLITE SIZE

Application of the Williamson-Hall method\(^1\)

- No crystallite size variation observable (L > 150 nm)
- Microstrain evolution
 - Increase with Am content
 - Slight increase for 7.5 at.\% Am

Am/(U+Am) :
- 7.5 at.\%
- 15 at.\%
- 30 at.\%
- 40 at.\%
- 50 at.\%
- 60 at.\%
- 70 at.\%

Measurements on aged samples

- $\text{U}_{1-x}\text{Am}_x\text{O}_{2\pm\delta}$ samples with Am ratios of 15 and 20 at.% aged for up to 1450 days studied using XRD and XAS
 - Complementary to a previous study with samples aged for 20 and 200 days

- XAS measurements at Am L_{III} and U $L_{\text{II}}/L_{\text{III}}$ edges
 - **XANES: Determination of cation oxidation states**
 - **EXAFS: Information on the local structure around each cation (Z, N, R, DW)**

Both XANES and EXAFS are compared to reference compounds:

- U (L_{III}) edge:
 - UO_2 (only $\text{U}^{+\text{IV}}$)
 - U_4O_9 ($\text{U}^{+\text{IV}}/\text{U}^{+\text{V}}$ (50/50) and no $\text{U}^{+\text{IV}}$)
 - U_3O_8 ($\text{U}^{+\text{V}}/\text{U}^{+\text{VI}}$ (66/33) and no $\text{U}^{+\text{IV}}$)

- Am (L_{III}) edge:
 - AmO_2 (only $\text{Am}^{+\text{IV}}$)
 - (U,Am) mixed oxalate (only $\text{Am}^{+\text{III}}$)

Comparison of XANES spectra to references1

- Am L\textsubscript{III} edge
 - Sample spectra aligned with that of the reference for Am+III
 - Am only present as Am+III

- U L\textsubscript{III} edge
 - Sample spectra between those of UO\textsubscript{2} and U\textsubscript{4}O\textsubscript{9}
 - Partial presence of U+V
 - Fitting by linear combination
 - U+V mole fraction close to that of Am +III

 \(\triangleright\) O/M ratios close to 2.00

- Behavior identical to that observed on “fresh” samples1,2

EXAFS fitting using fluorite-type models1

- Neither distortions nor coordination number changes \rightarrow the structure remains fluorite-type
- Interatomic distances: no evolution after 220 days and up to 1400 days
- Structural disorder: no evolution of Debye-Waller factors after 220 days

Comparison between XRD and XAS results

- Lattice parameter (XRD) and interatomic distances (XAS)
 - Agreement of the two methods on an increase followed by a saturation

- Structural disorder: microstrain (XRD) and Debye-Waller factors (XAS)
 - No evolution of the microstrain with time
 - Increase of the DW factors followed by a saturation

Comparison between XRD and XAS results

- Lattice parameter (XRD) and interatomic distances (XAS)
 - Agreement of the two methods on an increase followed by a saturation

- Structural disorder: microstrain (XRD) and Debye-Waller factors (XAS)
 - No evolution of the microstrain with time
 - Increase of the DW factors followed by a saturation

Comparison:

- Agreement on fluorite-type structure conservation and a low disorder even after 4-year storages
- Disagreement on the evolution of disorder with time
 - Long-range structure (XRD): no evolutions
 - Local structure (EXAFS): increase until saturation

Accumulation of defects in low-ordered domains (GB proximity...)
 - Promotes defect recombination
 - Leads to saturation
Study of helium behavior in $\text{U}_{1-x}\text{Am}_x\text{O}_{2\pm\delta}$

- Samples: $\text{U}_{0.85}\text{Am}_{0.15}\text{O}_{2\pm\delta}$ with two microstructures (MARIOS1) stored for 4 to 5 years
 - Dense
 - $> 93\%$TD
 - Open porosity
 - $< 2\%$vol
 - Tailored open porosity
 - $< 87\%$TD
 - Open porosity
 - $\approx 10\%$vol

- Measurements on helium release during thermal annealing
 - Performed in the ITU Knudsen cell (coupled with MS)
 - Helium released is analyzed using the Q-GAMES system2

- Characterization of samples before (and after) annealing
 - XRD/XAS
 - TEM

CONCLUSIONS

(U,Am)O$_{2±δ}$ behavior under 241Am-induced α self-irradiation

- Lattice swelling
 - Kinetic and saturation time depend on the sample activity
 - Saturation of about 0.8 vol% for all compositions

- Structural disorder
 - Low level of disorder even after 4-5 years of storage
 - Accumulation of defects in low-ordered domains \rightarrow recombination and saturation

- He behavior
 - TEM reveals the presence of cavities and dislocation loops
 - He release rate up to 1500 K and increase of cavity size

- No detrimental consequences of self-irradiation for (U,Am)O$_2$ use as transmutation targets
- Helium diffusion starting around 900 K, lower than irradiation temperature
THANK YOU FOR YOUR ATTENTION

Acknowledgements

- Actinet i3, Talisman and ESRF/ROBL beamline
- LEMA: P. Coste, M. Bataille
- CEA/PACFA: post-doc (D. Horlait) and Ph.D (F. Lebreton) fundings

References